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A B S T R A C T   

The current work outlines the impact of acetylacetone (AcAc) in the alkaline surface treatment bath on durability 
and the anti-corrosion properties of electro-galvanized steel (EGS) coated with a hybrid silane composition. The 
surface characteristics of the EGS samples before and after modifications were appraised using atomic force 
microscopy, field emission scanning electron microscopy, and contact angle measurements confirming the 
changes in roughness, morphology and wettability properties imposed by surface treatments. To elucidate the 
chemical composition of the protecting layer developed on the surface of EGS, X-ray photoelectron spectroscopy 
was utilized which evidently endorsed forming a film consisting of zinc hydroxide, zinc oxide, and zinc acety-
lacetonate. The corrosion resistance of the specimens during immersion in 3.5 % NaCl medium was determined 
using electrochemical impedance spectroscopy and polarization experiments. The low-frequency impedance (at 
0.01 Hz) of silane-coated samples modified in the optimal condition (0.5 M NaOH bath) in the presence and 
absence of AcAc was respectively ca. 15,900, 5800 Ω⋅cm2. The electrochemical results corroborated the over-
riding role of a trace amount of AcAc in the corrosion protection of silane-coated EGS samples. The novel surface 
treatment proposed in this work provides improved corrosion protection of silane coating on EGS having the 
lowest icorr and presenting inhibition efficiency of 74 % in polarization experiment.   

1. Introduction 

Due to the widespread application of electro-galvanized steel (EGS), 
the improvement of its corrosion resistance is the subject of prodigious 
interest. Many attempts have been made to fulfill this objective [1–3]. 
The application scope of EGS encompasses a wide range of industries, 
including the automotive industry for car body panels [4,5]. Further-
more, considerable attention is switched to environmental alternatives 
to mitigate detrimental routes. In this regard, an appealing approach is 
to modify the EGS with silane-based coatings as the replacement of toxic 
chromate coatings [6–8]. 

Silane sol-gel coatings have evoked substantial interest due to the 
environmentally friendly feature, ease of application, firm adhesion 
between the resultant film and the substrate [3,9], and applicability to 
various substrates [10–12]. There are many factors affecting the per-
formance of silane sol-gel films, including silane bath concentration, 

alkoxysilane precursors, silane bath pH, and silane film curing temper-
ature [13,14]. In fact, silane coatings provide barrier properties [3] 
which can be reinforced using various approaches [15–24]. 

Researchers have taken various approaches to reinforce corrosion 
resistance of silane coating by cerium nitrate [25], modified montmo-
rillonite clay [26], and silica nanoparticles [27]. 

As a typical procedure, an alkaline modification has been employed 
to activate the surface of EGS before the application of silane coatings 
[11,17,28]. 

Due to the importance of uniform surface coverage, the process and 
substrate parameters that affect the wetting and the reactions between 
galvanized steel and the pretreatment bath should be taken into account. 
In fact, proper surface activation may lead to improved wettability and 
adhesion [29,30]. Saarimaa et al. investigated the surface activity of 
hot-dip galvanized steel after alkaline treatment. To this end, they used 
NaOH based solution [31]. 
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The surface treatment of hot-dip galvanized steel was conducted by 
immersion in alkaline (sodium hydroxide) and acid (sulfuric acid) so-
lutions, focusing on improvement in the wettability of the samples 
during the phosphating process. The results confirmed the alteration of 
surface composition after alkaline and acid treatments which have the 
potential to activate the surface prior to subsequent processes [32]. 

In a research conducted by Makarychev et al. hot-dip galvanized 
steel samples were subjected to alkaline treatment using 1 M KOH so-
lution which in turn activated the surface prior to applying hybrid 
composite coating based on aminopropyltriethoxysilane [33]. 

Researchers also took advantages of alkaline treatment before 
applying different silane films including 3-mercaptopropyltrimethoxysi-
lane (MTMO), 3-aminopropyltriethoxysilane (AMEO), and 3-glycidoxy-
propyltrimethoxysilane (GLYMO). For this end, 10 % (v/v) NaOH 
solution was used as the treatment bath for treating the electro-
galvanized steel samples at 40 

◦

C [34]. 
Deflorian et al. fabricated a corrosion protection system by depos-

iting a silane layer consisting of a mixture of silanes (glycidoxypropyl-
trimethoxysilane, tetraethoxysilane, and methyltriethoxysilane) and an 
epoxy-polyester powder coating as the top layer, which can unveil the 
adhesion promoter role for the silane layer. Prior to silane deposition, 
the panels were degreased and treated in a commercial alkaline solution 
based on KOH, which ensured the etching and chemical activation of the 
surface [35]. 

However, the effect of surface modification conditions on the final 
silane coating properties has been rarely evaluated in the literature. The 
current work, for the first time, provides an in-depth study on the impact 
of different alkaline pretreatment bath compositions on the anti- 
corrosion properties of subsequent silane coating on EGS. In addition, 

acetyl acetone (AcAc) was also added to the alkaline solutions. AcAc 
known as a strong chelating agent [36] is able to form zinc acetyl 
acetonate, known as an efficient corrosion inhibitor [37] on the EGS 
surface. Considering the chelating properties of AcAc, its effect in the 
alkaline surface treatment solutions was examined on the final silane 
coating protection behavior for the first time. 

2. Experimental 

2.1. Materials 

EGS panels with a zinc layer thickness of 2.5 ± 0.5 μm were obtained 
using a batch galvanization process performed by Gheteh Pooshesh Kar 
(Shahriar, Iran). The panels were chopped into 10 cm × 3 cm di-
mensions and used as the substrate. Tetraethyl orthosilicate (TEOS), 3- 
(chloropropyl)-trimethoxy silane (CPTMS), and acetyl acetone (AcAc) 
were supplied by GBXF Silicones Co., Merck, and Sigma, respectively. 
Nitric acid and NaOH (sodium hydroxide) were purchased from Mojal-
lali Co. 

2.2. Methodology 

2.2.1. Chemical modification of EGS panels 
First, the EGS panels were cleaned from contaminants using acetone 

and subsequently modified by NaOH medium at various concentrations 
(0.1, 0.5, and 1 M) with and without the addition of 2 wt% AcAc. The 
samples were modified at alkaline bath at 50 ◦C for 5 min. The modified 
panels were washed thoroughly using D.I water and dried by a com-
pressed air stream. The details of samples pretreatment solutions are 
given in Table 1. According to this table presence of AcAc decreases 
alkalinity of the pretreatment solution, which is significant in the case of 
0.1 M NaOH solution and negligible in the case of 0.5 M and 1 M NaOH 
solution. 

2.2.2. Preparation of silane coating 
The silane coating bath was prepared by mixing ethanol (73.7 % v/ 

v), nitric acid (0.2 % v/v), D⋅I water (7.5 % v/v), TEOS (14.1 % v/v) and 
CPTMS 4.5 % (v/v). The aforementioned formulation was agitated 
overnight at room temperature (25 ◦C), which ensures the acceptable 
completion of the hydrolysis reaction (conversion of alkoxy groups to 

Table 1 
The details of surface pretreatment of different samples.  

Sample Details of pretreatment bath Bath pH 

Unmodified No pretreatment was performed – 
0.1 M 0.1 M NaOH 12.5 
0.1 M + AC 0.1 M NaOH (containing 2 wt% of AcAc) 9.5 
0.5 M 0.5 M NaOH 13.1 
0.5 M + AC 0.5 M NaOH (containing 2 wt% of AcAc) 13.0 
1 M 1 M NaOH 13.3 
1 M + AC 1 M NaOH (containing 2 wt% of AcAc) 13.1  

(a) (b) (c) (d) 

(e) (f) (g) 

1 µm 1 µm 1 µm 1 µm 

1 µm 1 µm 1 µm 

Fig. 1. FE-SEM micrographs of the modified surfaces prior to silane dip coating (a) unmodified, (b) 0.1 M, (c) 0.1 M + AC, (d) 0.5 M, (e) 0.5 M + AC, (f) 1 M, (g) 1 M 
+ AC. 
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silanol groups). Afterward, EGS panels were dip-coated at a constant 
withdrawing speed of 100 mm/min. Then, the panels were allowed to 
dry at room temperature for 24 h and later the drying process was 
completed at a preheated oven at 150 ◦C for half an hour. Next, 1 cm × 1 
cm area was selected as the exposure area, and the remaining area of the 
surface was covered using a sealant mixture. 

2.3. Characterization 

FE-SEM (field emission scanning electron microscopy) analysis was 
carried out in order to explore the morphological changes imposed by 
various alkaline modification conditions, to determine the surface 
coverage of silane films on EGS samples and the surface features after 
exposure to the corrosive environment. In this regard, Tescan Mira3 
(Czech Republic) equipped with EDS (energy dispersive spectroscopy) 
was utilized. 

The electrochemical behavior of the samples was assessed by EIS 
(electrochemical impedance spectroscopy) and polarization technique 
using an Ivium compactstat instrument performing on intact specimens 
subjected to 3.5 % NaCl medium. EIS was measured at open circuit 
potential applying 10 mV perturbation within 10 mHz–10 kHz fre-
quency range. Polarization was measured at scan rate of +0.5 mV/s 
from − 200 to +200 mV vs open circuit potential. Two replicas were 
tested through a three-electrode set-up constituted by a reference 
(saturated calomel), counter (platinum), and the working electrode 
(samples with 1 × 1 cm exposed area). Except for the initial fluctuation 
in the potential at the early stages of immersion, almost after 30 min, the 
open circuit potentials were stable. 

To probe the chemical composition of the modified sample at the 
optimum condition by addressing the binding energies according to C1s 
line at 285.0 eV, XPS (X-ray photoelectron spectroscopy) was performed 
using X-ray 8025-BesTec XPS system employing Al Kα radiation. 

The surface morphology/roughness of the EGS after modification 
was investigated using DS 95-200 AFM (atomic force microscope). 
Tapping mode was utilized to record the AFM images. The wettability of 
the samples prior and after surface treatments was investigated through 
a contact angle measuring device by placing a 4 μL drop on the surface 
and immediate image capturing. The measurements were repeated five 
times. The grazing incidence X-ray diffraction (GIXRD) analysis was 
performed by PHILIPS (Netherlands) to detect the phase-structure of the 
corrosion products formed on the silane coated samples after 72 h 
exposure to saline solution. 

3. Results and discussion 

3.1. Characterization of surface modified EGS 

To pursue the alteration in surface morphology imposed by various 
modification conditions, the FE-SEM technique was exploited. The im-
ages of the samples after alkaline modification at various concentrations 
are shown in Fig. 1. The micrographs confirmed altering the surface 
morphology and the oxide film development on the surface in most of 
the modification conditions. In the case of the 0.5 M + AC sample, the 
oxide film was more compact. Moreover, increasing the concentration of 
NaOH in the modification bath caused more pronounced morphological 
changes to the surface by changing the chemical composition of the 
surface, simultaneously. In other words, the galvanized surface appears 
to have been deteriorated, and corrosion has occurred on the surface at 
higher modification concentrations (1 M, 1 M + AC). It can be deduced 
that by increasing the concentration of NaOH or addition of AcAc to the 
modifying bath, the surface appearance of EGS panels changes signifi-
cantly, revealing the formation of a layer of corrosion products on the 
surface. The alkaline condition leads to the development of a layer of 
corrosion products. In such conditions, the zero-valent zinc converts to 
zincate according to Eq. (1) [38]. After surface neutralization, due to 
washing with D.I water zincate converts to zinc hydroxide according to 

Eq. (2) [39]. 

Zn+ 2OH− + 2H2O ↔ Zn(OH)4
2−

+H2 (1)  

Zn(OH)4
2− ↔ Zn(OH)2 + 2OH− (2) 

The samples were also subjected to elemental analysis (EDS), and the 
findings are listed in Table 2. Accordingly, the weight percent of zinc 
sharply decreased compared to the reference sample, and a large 
amount of iron was detected on the surface. These outcomes are 
consistent with SEM images and indicate that the galvanized surface has 
been altered and destroyed at highly alkaline conditions. The milder 
modification conditions, i.e., 0.5 M, 0.5 M + AC resulted in a more 
oxygen content (as hydroxide or oxide) than the other samples. Such 
controlled oxidation can provide active places on the surface for the 
subsequent coating. 

AFM gives ideas about the extent of corrosion attacks on the surface, 
examining the roughness of the specimens. The changes on the surface 
topography imparted by various modifications were screened in Figs. S1 
and S2. The surface of the unmodified galvanized steel is smooth, while 
surface modification has increased the surface roughness. Fig. S2h 
summarizes the different parameters, including Sz (maximum height), 
Sa (arithmetical mean height), and Sq (root mean square height). 
Increasing the concentration of NaOH led to an increase in surface 
roughness of the samples, which is in reasonable conformity with FE- 
SEM outcomes. The 1 M + AC surface modification reveals the great-
est values of roughness parameters which might be due to greater 
etching effects at the high alkaline condition and the chelation of AcAc 
with Fe2+ and Zn2+ cations. The formation of such compounds on the 
surfaces during the modification process justifies the significant changes 
in the aforementioned parameters [40]. 

Fig. 2 depicts the contact angle (θ) of water droplets on the surfaces 
of unmodified and modified samples. The θ indicates the wettability at 
the solid-liquid interface, and the smaller θ refers to better spreading 
ability. The water contact angle is also attributed to the hydrophilic/ 
hydrophobic nature on the surface. The water contact angle (91.8 ± 2.3) 
of the unmodified EGS is much larger than the modified samples, which 
indicates an improvement in the wettability of the surface upon alkaline 
pretreatment. According to Fig. 2, the 0.5 M + AC surface-modified 
sample has the lowest θ value. Wettability of the metal surface is one 
of the important factors affecting silane coatings' performance. Higher 
wettability reflects higher hydrophilicity originated from polar groups 
formation on the surface. Wettability not only affects uniform silane film 
formation on the surface but also affects its chemical reaction with the 
EGS surface. The presence of sufficient polar groups, e.g., OH groups, on 
the surface is essential for the condensation reaction of silanol groups of 
silane coating to form Si-O-Zn bonds. According to the results of surface 
roughness, contact angle, and elemental analysis, 0.5 M + AC sample 
was selected as the best surface modification. The zinc layer was 
significantly destroyed due to the severe corrosivity of 1 M NaOH. 

XPS test was carried out to determine the composition of hydroxide/ 
oxide compounds in the surface film. Supplementary Information 
(Fig. S3) gives the essence of Zn, O, and C elements on the surface of 0.5 
M + AC sample in its wide-scan XPS spectra. Consistent with the EDS 
outcomes, iron was not observed on this sample. The high-resolution O1 

Table 2 
Elemental weight percentage of the alkaline modified surfaces prior to silane dip 
coating.  

Sample Fe O Zn 

Unmodified –  3.4  96.6 
0.1 M –  12.8  87.2 
0.1 M + AC –  10.6  86.8 
0.5 M –  35.3  62.6 
0.5 M + AC –  37.5  64.7 
1 M 89.2  3.6  7.2 
1 M + AC 81.3  11.0  7.7  
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(a) (d) (c) (b) 

(e) (f) (g) 

91.8°±2.3 84.6°±1.2 
85.8°±2.2 81.10°±1.6 

65.5°±3.1 69.5°±2.5 72.7°±2.7 

Fig. 2. Contact angles measurements results of (a) unmodified, (b) 0.1 M, (c) 0.1 M + AC, (d) 0.5 M, (e) 0.5 M + AC, (f) 1 M, (g) 1 M + AC.  

Fig. 3. FESEM images of silane-coated samples applied on EGS surface modified at different conditions.  
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s spectrum depicts the binding energies at 530, 531.8, and 533.1 eV, 
which correspond to the acetylacetonate, ZnO, and Zn(OH)2 bands, 
respectively [41]. The high-resolution Zn 2p3/2 spectrum shows similar 
oxy/hydroxide bands at around 1021.5, 1022.2, and 1022.5 eV, 
respectively [42]. This suggests that alkaline modification in the pres-
ence of AcAc formed a film of zinc hydroxide, zinc oxide, and zinc 
acetylacetonate. Active surface functionality on the EGS surface can 
form covalent bonding with the upcoming silane coating. 

3.2. Silane coatings applied on surface-modified EGS 

Silane was coated on the surface-modified and unmodified samples. 
The proposed reaction of silane compounds is hydrolysis of alkoxy 
groups in the first step to form silanols groups and condensation of 
silanol groups and surface OH groups in the second step [43]. The 
chloride group is also susceptible to hydrolysis forming hydroxyl func-
tion on the alkyl chain of silane compound [44]. This reaction involves 
in release of HCl which dropped the pH from 3.5 to 3.0 after hydrolysis 
period. The overall silane reactions to form silane coating are depicted in 
the Supplementary Information (Fig. S4). The surface coverage of silane 
coatings formed on the EGS samples was assessed by FESEM-EDS. The 
results are provided in Fig. 3 and Table 3. According to the FESEM mi-
crographs, the silane film formation on the unmodified surface was not 
uniform. The treatments by 0.1 M NaOH (with and without AcAc), led to 
a better uniformity compared to the unmodified sample. The highest 
uniformity with silane coating was obtained on the substrate treated by 
using 0.5 M NaOH (with and without AcAc). The treatments by 1 M 
NaOH (with and without AcAc) resulted in a very irregular surface film, 
probably due to the deterioration of the galvanized layer. Elemental 
analysis showed that the highest Si content on the surface could be 

achieved by treatment at 0.5 M NaOH (in the presence and absence of 
AcAc), which can be attributed to the better uniformity and integrity of 
the silane films formed on these samples. It was depicted that surface 
treatment with alkaline solution improves the wettability of the surface 
(Fig. 2), which can subsequently result in more silane coating build-up. 
In contrast, low surface wettability usually leads to repelling of the 
silane coating, resulting in inhomogeneous surface coverage. 

The corrosion resistance of silane coatings was evaluated in a 3.5 % 
sodium chloride solution through visual observation, EIS, and polari-
zation measurements. Fig. 4 displays the visual observation of the silane 
coated samples after immersion for 12 days. After the prolonged im-
mersion period of 12 days, the optimal sample was only covered with 
white rust, while remarkable corrosion products were detectable in the 
case of unmodified EGS, silane coated-unmodified EGS, silane-coated 1 
M, and silane-coated 1 M + AC samples. 

The silane-coated samples (with the exposure area of 1 × 1 cm) were 
analyzed using EIS measurements during various immersion times, i.e., 
1 h, 3 h, 24 h, 48 h, and 72 h, to evaluate their corrosion protection on 
the modified EGS substrates. Fig. 5 displays the Nyquist diagrams for the 
silane-coated samples. Impedance module and Bode-phase diagrams are 
given in Supplementary Information (Figs. S5 and S6), respectively. 

Bode-phase diagrams may be used to explain corrosion processes 
that take place at the coating and metal-solution interface [45]. In the 
case of the bare EGS sample (without coating), a two-time constant has 
been detected, which is connected to the electrical double layer and 
oxide layer. At the same time, two- or three-time constants have been 
found for the most silane-coated samples. These high-frequency, me-
dium-frequency, and low-frequency time constants are correlated to the 
silane coating, the oxide layer (resulted from surface modification or 
oxidation of metal surface during corrosion test), and electrical double 
layer, respectively [46,47]. 

The low-frequency impedance in Bode and capacitive-loop diameter 
in the Nyquist diagrams indicate the total resistance of a coating system. 
These parameters can be thought of as a precise criterion for assessing 
corrosion resistance [48,49]. The low-frequency impedance values (|Z| 
at 10 mHz) of silane coated samples are provided in Fig. 6. The blank 
sample has the smallest capacitive-loop size and lowest low-frequency 
impedance modulus. This behavior is caused by the occurrence of 
corrosion and deterioration of the EGS surface. By application of the 
silane coatings, overall resistance of the samples has been improved. 
Silane coatings on the surface-modified samples showed a resistance 
increase compared to the silane coating on the unmodified surface. In 

Table 3 
EDS elemental composition (wt%) of silane-coated samples applied on EGS 
surface modified at different conditions.   

C O Fe Zn Si 

Silane coated-unmodified EGS  9.1  15.4  0  32.2  43.3 
Silane coated 0.1 M  9.1  14.6  0  32.4  43.9 
Silane coated 0.1 M + AC  8.7  14.7  0  33.2  43.4 
Silane coated 0.5 M  12.4  19.7  0  17.4  50.5 
Silane coated 0.5 M + AC  12.9  18.9  0  17.1  51.1 
Silane coated 1.0 M  8.9  20.3  31.6  3.9  35.3 
Silane coated 1.0 M + AC  8.3  19.9  30.7  3.2  37.9  

(e) (f) (g) (h) 

(a) (b) (c) (d) 

1 cm 1 cm 1 cm 1 cm 

1 cm 1 cm 1 cm 1 cm 

Fig. 4. The EGS panels after immersion in 3.5 % NaCl solution for 12 days (a–h); (a) uncoated-unmodified EGS, (b) silane coated-unmodified EGS, (c) silane coated 
0.1 M, (d) silane coated 0.1 M + AC, (e) silane coated 0.5 M, (f) silane coated 0.5 M + AC, (g) silane coated1M, (h) silane coated 1 M + AC. 
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addition, the surface modification in the presence of AcAc outperforms 
samples without it in terms of corrosion protection. Among them, the 
best performance belongs to the silane-coated 0.5 M + AC sample. In this 
case, the total value rises and reaches its limit after 72 h. This is the 
obvious evidence of the interaction of zinc and AcAc at the surface- 
active areas. 

In order to conduct an in-depth study into the obtained results, the 

data were fitted using an appropriate electrical equivalent circuit (EEC). 
Supplementary information (Fig. S7) shows the EECs that were utilized 
to match the EIS data. 

Considering the non-ideal action of the samples, CPE (constant phase 
element) was provided in the circuits consisting of Y (admittance) and n 
(exponent) elements. The CPE impedance is given by the Eq. (3), where 
ω is the angular frequency and j is the imaginary unit [50]. 

Fig. 5. The Nyquist diagrams of silane-coated samples at different immersion times.  
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ZCPE =
1

Y0(jω)n (3) 

In fact, CPE is considered due to the lack of surface homogeneity or 
lack of intactness of the inhibitive layer [51,52]. The modeled circuit for 
the EGS shows five fragments, including electrolyte resistance (Rs), 
charge transfer resistance (Rct), double-layer constant phase element 
(CPEdl), Rox (oxide layer resistance) and CPEox (oxide layer constant 
phase element), as shown in Fig. S7a. Fig. S7b reveals a second time 
constant similar to Fig. S7a, except that Rox (oxide layer resistance) and 
CPEox (oxide layer constant phase element) were substituted by Rc 
(coating resistance) and CPEc (coating constant phase element). Fig. S7c 
provides different moduli which are added to the circuit used to fit three- 
time constant frequency responses. The quantitative outcomes are pre-
sented in Supplementary information (Table S1). 

In the case of the neat EGS sample, the total resistance (Rct + Rox +

Rc) is lower than those of the other samples during the immersion stages. 
For this sample, the total resistance increases up to 48 h, and later on, 
begins to decline. The total resistance values of the silane on the un-
modified sample are slightly higher than the neat EGS sample (blank), 
meaning that the application of the coating has increased the corrosion 
resistance. However, the total resistance values are higher as alkaline 
modifications are applied to EGS surfaces. The oxide layer appears to be 
the most important contributor to the corrosion resistance. The oxide 
layer resistance of the silane-coated 0.5 M + AC sample is higher than 
that for the other surface-modified silane-coated specimens at the end of 
the exposure time. For a case in point (silane-coated 0.5 M + AC), total 
resistance values increased with time up to 72 h. Whereas the other pre- 
modified silane coated samples showed total resistance slow increment 
and later on started a reduction. Hence, this behavior of silane-coated 
0.5 M + AC concludes a good protecting performance. This may be 
due to zinc and AcAc interacting at the surface-active regions. 

Changes in coating resistance (Rc) give information on the barrier 
action of the coating [42]. Coating resistance for silane-coated 0.5 M +
AC is the highest among the silane coated samples across the whole 
immersion duration. It is also understandable from the results that the 
reduction in initial film resistance occurs due to the penetration of 
electrolyte into the coating. In addition, corrosion reaction beneath the 
coating can damage the coating integrity during immersion time leading 
to a decrease in coating resistance. This outcome is a sign of gradual 
electrolyte uptake and loss of its barrier protection. 

It is certifying from the EIS results that silane-coated 0.5 M + AC 
demonstrates the best corrosion protection among the pre-modified 
silane coated samples, which is consistent with the samples' visual 
appearance (Fig. 4). 

Comparison of CPE values of the samples (Table S1) can also provide 
information about the electrochemical behavior of surface treated EGS 
samples. The silane coated unmodified EGS sample at the end of the 
evaluation period (72 h immersion) showed that the Y0,c equal to 110.9 
μsn⋅Ω− 1⋅cm− 2, which was decreased for the surface modified samples in 
0.1 M and 0.5 M NaOH. Such a decrease can be attributed to a lower 
water uptake of these coatings and less damage induced by corrosion to 
the silane coatings. Surface treatment at 1 M NaOH led to an increase in 
CPE admittance, reflecting the negative effect of surface treatment at 
high alkaline conditions. 

To achieve a deeper understanding of the protection process, the 
potentiodynamic polarization test was used. Fig. 7 displays the repre-
sentative polarization scans of the prepared samples after 72 h dipping 
in the NaCl solution. Tafel extrapolation model fitting was used to 
measure icorr (corrosion current density), and Ecorr (corrosion poten-
tial). Inhibition efficiency of the samples after 72 h of immersion was 
calculated using Eq. (4) [53], which along with the data obtained from 
fitting the polarization curves, are tabulated in Table 4. 

η =

(

1 −
icorr

i0
corr

)

× 100 (4)  

where icorr and icorr
0 represent the corrosion current density of the pre- 

treated/silane-coated samples and corrosion current density of the 
blank sample, respectively. 

Fig. 6. The low-frequency impedance of silane-coated samples at different 
immersion times. 

Fig. 7. Potentiodynamic polarization plot of the silane-coated samples after 72 
h immersion. 

Table 4 
The values of corrosion current density, corrosion potential, and Tafel slopes for 
different samples after 72 h immersion in 3.5 wt% NaCl solution.  

Sample Ecorr (V/SCE) icorr (μA/cm2) η (%) 

Uncoated-unmodified EGS − 0.976 ± 0.10 3.5 ± 0.3 – 
Silane coated-unmodified EGS − 0.984 ± 0.08 1.6 ± 0.2 54 
Silane coated 0.1 M − 0.99 ± 0.05 1.5 ± 0.2 57 
Silane coated 0.1 M + AC − 0.987 ± 0.03 1.4 ± 0.2 60 
Silane coated 0.5 M − 0.986 ± 0.03 1.4 ± 0.1 60 
Silane coated 0.5 M + AC − 0.985 ± 0.02 0.9 ± 0.1 74 
Silane coated 1 M − 1.08 ± 0.05 2.3 ± 0.1 34 
Silane coated 1 M + AC − 1.07 ± 0.05 1.5 ± 0.2 57  
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Looking at Fig. 7 and Table 4, depression of anodic and cathodic 
branches has been occurred by applying the silane coating and surface 
modification of EGS. The lower icorr value for the silane-coated un-
modified sample compared to the blank sample indicates the protecting 
ability of the silane film. Compared with the unmodified sample, the 
modified samples at 0.1 and 0.5 M NaOH revealed a significant reduc-
tion in icorr where the treatment at 0.5 M NaOH, especially in the pres-
ence of AcAc, depicted the most remarkable impact on the corrosion 
rate. The results obtained from Eq. (4) indicated that the highest inhi-
bition efficiency was achieved by the silane-coated 0.5 M + AC sample. 
Upon surface modification with 1 M NaOH, the shift of corrosion po-
tential to more negative values has been taken place, which can be 
attributed to the presence of an excess of hydroxide at the interface, even 
after washing, which led to an increase in the interface pH. Such an 
increase in pH shifts the electrode potential to more negative values on 
the remaining zinc layer, according to Eq. (5) [54], and on the Fe surface 
where the zinc layer is destroyed, according to Eq. (6) [55]. 

Zn(OH)2 + 2H+ + 2e− ⇌Zn+ 2H2O (5)  

E = − 0.439–0.0591pH. 

Fe(OH)2 + 2H+ + 2e− ⇌Fe+ 2H2O (6) 

E = − 0.08–0.0591pH. 
The best protection ability was confirmed by the lowest icorr of silane 

coated 0.5 M + AC sample. Based on the electrochemical results, the 
surface treatment at 0.1 M NaOH generates hydroxide groups on the 
surface, resulting in improved protection. The superior protection was 
achieved in the presence of 0.5 M NaOH providing sufficient surface -OH 
groups. An increase in alkalinity up to 1 M NaOH, led to a reduction in 
protection compared to 0.5 M NaOH, which could be originated from 
the presence of excess unneutralized OH− anions in the surface film and 
a strong attack on the zinc layer. Improved protection with surface 
treatment in the presence of AcAc could be connected to its strong 
chelation with zinc cations on the surface. 

The status of the silane coated samples after 72 h immersion was 
further inspected by SEM and outcomes are depicted in Fig. 8. 

As seen in Fig. 8a and b, the metal surface of the blank and un-
modified (Silane coated-Unmodified EGS) samples has formed a high 
growth of corrosion products. As a result of the extensive metal disso-
lution, EGS, without any modification, is determinedly corroded. The 
surface morphology is totally different for the modified samples. In other 
words, a denser morphology with fewer corrosion attacks was observed 
for these samples than the blank and unmodified samples. The silane- 
coated 0.5 M + AC sample illustrated the best integrity among the test 
samples indicating the least corrosion attacks which was in line with the 

(a1) (b1) (c1) (d1) 

(e1) (f1) (g1) (h1) 

50 50 50 50 

50 50 50 50 

(a2) (b2) (c2) 
(d2) 

(e2) (f2) (g2) (h2) 

2 2 2 2

2222

Fig. 8. FE-SEM micrographs of the silane coated samples after exposing to 3.5 % NaCl solution (a1,a2) uncoated-unmodified EGS (b1,b2) silane coated-unmodified 
EGS, (c1, c2) silane coated 0.1 M, (d1,d2) silane coated 0.1 M + AC, (e1,e2) silane coated 0.5 M, (f1,f2) silane coated 0.5 M + AC, (g1,g2) silane coated 1 M, (h1,h2) 
silane coated1M + AC. 
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electrochemical test results. 

3.3. Impact of AcAc in the pretreatment solution 

AcAc is a robust chelating agent which can form zinc acetylaceto-
nate. Its ability to create zinc acetylacetonate on the galvanized steel 
surface was proved by XPS (see Section 3.1). In the absence of zinc 
acetylacetonate, the only possible reaction on the surface of galvanized 
steel is the formation of zinc hydroxide, as per Eq. (2). Although the 
hydroxide functionalities on the galvanized steel surface are required to 
favor the condensation reactions with silanol groups of silane coatings, 
due to its high basic character (zinc hydroxide has a pKa of 29.0 [56]), it 
has low stability at pH ≈ 3–4 (the silane bath pH). AcAc has a weak basic 
character (pKa = 9.07 [57]), so its complex with zinc can be more stable 
at low pHs as pH ≈ 3–4 compared to zinc hydroxide. In other words, 
with partial substitution of zinc hydroxide with zinc acetylacetonate in 
the presence of AcAc, the galvanized steel surface becomes more resis-
tant to mildly acidic conditions. In addition, zinc acetylacetonate has 
already been known as a corrosion inhibitor [37]. The presence of zinc 
acetylacetonate-rich thin layer on the galvanized steel could serve as a 
corrosion inhibitor reservoir for the subsequent corrosion attacks espe-
cially when the galvanized layer is damaged. Utilization of AcAc in the 
alkaline pretreatment solutions of galvanized steel can improve the 
quality of the surface film for the application of subsequent coatings. 

To gain deep understanding of the effect of AcAc on the protective 
function of silane coated samples, the samples were examined by GIXRD 
analysis. The result of GIXRD analysis of silane coated samples after 72 h 
exposure to the saline solution is plotted in Fig. 9. The peaks appeared at 
2θ ≈ 22◦ and 2θ ≈ 33

◦

can be ascribed to ferric hydroxide and ferric 
oxide related compounds [58], respectively which are not detected in 
case of silane coated 0.5 M + AC sample. This phenomenon indicates the 

corrosion mitigation as a result of surface treatment. The pure Fe peaks 
(reference code: 96-900-6598) is evident in the spectrum attributed to 
the Fe substrate beneath the Zn layer. The peaks appeared at 2θ ≈ 43.5

◦

is ascribed to Zn (101) according to 96-901-2436 reference code which 
is intensified in the patterns obtained from pretreated samples and can 
be interpreted by less deterioration of zinc layer. The Zn5(OH)8Cl2.H2O 
peak (11

◦

) [59] is escalated in Silane-coated 0.5 M sample in respect to 
available zinc oxide compounds produced by alkaline treatment ac-
cording to the reaction shown in Eq. (7) [60]. The intensity of the 
aforementioned peak was weakened in Silane coated 0.5 M + AC sample 
due to the formation of zinc acetyl acetonate which can act as an 
effective corrosion inhibitor. 

4ZnO(s) + Zn2+
(aq) + 5H2O+ 2Cl−(aq)→Zn5(OH)8Cl2⋅H2O (7) 

In order to gain insight into the exerted impact of pretreatment used 
in the current study, the obtained corrosion impedances were compared 
with the relevant articles considering the application of silane hybrid 
coating on different pre-treated surfaces using alkaline pretreatment 
conditions. The results are summarized in Table 5. It can be concluded 
from the results that the optimum pretreatment used in this study (0.5 
M + AcAc) has a comparable impact on the performance of silane 
coating for corrosion protection of galvanized steel. 

4. Conclusion 

Prior to applying the silane coating, the EGS surface was modified 
using NaOH alkaline solutions with or without acetylacetone (AcAc) to 
improve the corrosion protection of the metallic substrate. Surface 
modification at 1 M NaOH showed severe corrosion attacks on the sur-
face, leading to the deterioration of zinc layer integrity. However, sur-
face modification at lower concentrations resulted in no side effect on 
zinc layer integrity while increasing the surface oxygen content. The 
treatment at 0.5 M NaOH and AcAc produced a significant amount of 
oxygen (as hydroxide or oxide) on the surface film, while the chelation 
of AcAc with zinc was confirmed with XPS. The low-frequency imped-
ance (at 0.01 Hz) of silane-coated samples modified in 0.5 M NaOH bath 
in the presence and absence of AcAc was respectively ca. 15,900, 5800 
Ω⋅cm2. The electrochemical findings confirmed the overriding function 
of a low amount of AcAc in the alkaline surface treatment bath on the 
corrosion resistance of the silane coating. 

Partial substitution of zinc hydroxide with zinc acetylacetonate in 
the presence of AcAc, led to higher stability of galvanized steel surface in 
mildly acidic conditions, which is a typical medium for silane coatings. 
Considering the results obtained, the treatment method can be a proper 
substitute for the available alkaline solutions to enhance the corrosion 
protection performance of silane coatings. 
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Fig. 9. GIXRD pattern of the silane coated samples after 72 h exposure to 3.5 % 
NaCl solution. 

Table 5 
Comparison of the pre-treatment effect on the anti-corrosion performance of different substrates coated with silane coating.  

Substrate Pre-treatment condition Immersion time Low frequency impedance (blank 
sample) 

Low frequency impedance (pre-treated and silane 
coated sample) 

Reference 

Galvanized steel 0.5 M + AcAc (5 min @ 
50 

◦

C) 
72 h 1.4 kΩ cm2 15.9 kΩ cm2 – 

Magnesium 3 M NaOH (48 h) 1 h 1 kΩ cm2 6 kΩ cm2 [61] 
Aluminium alloy 

AA2024-T3 
0.5 M NaOH (5 min) 72 h 5 kΩ cm2 40 kΩ cm2 [62] 

Galvanized steel Alkaline cleaner Initial immersion 
stage 

500 Ω cm2 5.5 kΩ cm2 [63]  

S.A.T. Nejad et al.                                                                                                                                                                                                                              



Progress in Organic Coatings 171 (2022) 107048

10

Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.porgcoat.2022.107048. 
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